Pneumatic Actuator Products
Cylinders, Guided Cylinders and Rotary Actuators
Catalog 0900P-6
WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application including consequences of any failure, and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated on the separate page of this document entitled “Offer of Sale”.

© Copyright 2016, 2011, 2009, 2008 Parker Hannifin Corporation. All Rights Reserved

Parker Hannifin Corporation
Pneumatic Division
Wadsworth, Ohio
www.parker.com/pneumatics
<table>
<thead>
<tr>
<th>Category</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Index, Application Engineering Data</td>
<td></td>
</tr>
<tr>
<td>A Tie Rod Cylinders</td>
<td>4MA/4ML Series, 4MAJ Series, 2MNR Series, ACVB Option, LPSO Option, P1D Series</td>
</tr>
<tr>
<td>B Round Body Cylinders</td>
<td>SR/SRM Series, SRD/SRDM Series, SRG/SRGM Series, SRX Series, P1A Series, P Series</td>
</tr>
<tr>
<td>C Compact Cylinders</td>
<td>P1Q Series, LP/LPM Series</td>
</tr>
<tr>
<td>D Guided Cylinders</td>
<td>P5T Series, P5L Series, HB Series, P5E Series, XL Series</td>
</tr>
<tr>
<td>E Automation Products</td>
<td>Grippers, Slide Tables, Rotary Tables, Escapements</td>
</tr>
<tr>
<td>F Rodless Cylinders</td>
<td>OSP-P, P1X Series, P1Z Series, GDL Series</td>
</tr>
<tr>
<td>G Rotary Actuators</td>
<td>PV Series, PRNA/PRN Series, PTR Series, B671/F672 Series, HP Series</td>
</tr>
<tr>
<td>H Air Motors</td>
<td>P1V-S Series</td>
</tr>
<tr>
<td>I Actuator Accessories</td>
<td>Linear Alignment Couplers, Flow Controls, 4TK Air Oil Tanks, PRL Series</td>
</tr>
<tr>
<td>J Electronic Sensors</td>
<td>Solid State, Reed and Proximity Sensors</td>
</tr>
<tr>
<td>K Industrial Shock Absorbers</td>
<td>Industrial Shock Absorbers (Linear Decelerators)</td>
</tr>
<tr>
<td>L Fax Forms, Safety Guide, Offer of Sale</td>
<td>Application FAX Forms</td>
</tr>
</tbody>
</table>
Tie Rod Cylinders

4MA / 4ML Series - Flexible NFPA Cylinder
- Bore sizes 1-1/2 through 8 inch
- 20 standard mounting styles
- Pressures up to 250 PSI
- Temperatures -50°F to 250°F
- Aluminum body construction

4MAJ - Rodlock Cylinder
- Bore sizes 1-1/2 through 8 inch
- 17 standard mounting styles
- Pressures up to 100 PSI
- Temperatures -10°F to 165°F
- Aluminum body construction

2MNR Series - Non-Rotating
- Bore sizes 1-1/2 through 4 inch
- 9 standard mounting styles
- Pressures up to 250 PSI
- Temperatures -10°F to 165°F
- Non-rotating, multi-rod design

P1D Series - ISO 15552 / ISO 6431
- 5 available for maximum flexibility
- Bore sizes 32mm through 200mm
- Pressures up to 145 PSI
- Temperatures -10°F to 250°F
- Aluminum body construction

Round Body Cylinders

SR / SRM / SRD / SRDM Series - Non-Repairable
- Bore sizes 5/16 through 3 inch
- 28 mounting styles
- Pressures up to 250 PSI
- Temperatures -10°F to 165°F
- Stainless steel body construction

B2

SRG / SRGM Series - Stainless Caps
- Bore sizes 1-1/16 through 3 inch
- Continuous position feedback
- Pressures up to 150 PSI
- Temperatures 40°F to 165°F
- Stainless steel body construction

B37

SRX Series - Position Feedback
- Bore sizes 1-1/16 through 3 inch
- Continuous position feedback
- Pressures up to 150 PSI
- Temperatures 40°F to 165°F
- Stainless steel body construction

B92

P1A Series - ISO Non-Repairable
- Bore sizes 10mm through 25mm
- 5 mounting styles
- Pressures up to 145 PSI
- Temperatures -40°F to 302°F
- Stainless steel body construction

B104

P Series - Repairable
- Bore sizes 1-1/8 through 4 inch
- 4 mounting styles
- Pressures up to 150 PSI
- Temperatures -10°F to 250°F
- Aluminum body construction

B50
Compact Cylinders

P1Q Series - Economy Compact Cylinder
- Bore sizes 12mm through 100mm
- 4 flexible mounting options
- Pressures up to 10 PSIG
- Temperatures 23°F to 158°F
- Aluminum body construction

LP / LPM Series - Compact Cylinder
- Bore sizes 9/16 through 4 inch
- 6 mounting styles
- Pressures up to 150 PSIG
- Temperatures -10°F to 200°F
- Aluminum body construction

Guided Cylinders

P5T Series - Compact Guided
- Bore sizes 16mm through 100mm
- Pressures up to 145 PSIG
- Temperatures 0°F to 250°F
- Aluminum body construction
- Flexible porting: top, rear, side

P5L Series - Guided
- Bore sizes 20mm through 100mm
- Thrust, Reach and Base version available
- Direct mounting
- Pressures up to 145 PSIG
- Temperatures 0°F to 250°F
- Extruded aluminum body construction

HB Series - Heavy Duty Guided
- Bore sizes 1-1/2 through 2-1/2 inch
- Thrust, reach and compact versions available
- Air service pressure up to 250 PSIG, hydraulic service up to 750 PSIG
- Temperatures 0°F to 250°F
- Aluminum body construction
- Rod lock version available

P5E Series - P1D ISO Guided
- Bore sizes 32mm through 100mm
- Pressures up to 145 PSIG
- Temperatures 14°F to 165°F
- Aluminum body construction
- Rod lock version available

XL Series - Slide / Glided
- Bore sizes 9/16 through 1-1/2
- Thrust, Reach and Base version available
- Lightweight body
Automation Products

Economy Grippers
- Cost effective solution for machine builders
- Angular and Parallel
- 12mm to 32mm bore

Precision Grippers
- Premium product for precision and durability
- Repeatability to ± 0.00005mm
- Parallel 2 and 3 jaw
- Strokes to 73.5mm
- Grip forces to 44,000 N
- Clean room
- Electric grippers

Slide Tables
- Built in linear rail
- Bore size 6-25mm
- Available with stroke adjusters and shock absorbers

Rotary Tables
- Twin rack and pinion rotary with integrated table
- Rotation adjustment standard 0-190 degrees
- Available with shock absorbers
- Hollow shaft standard for wiring and piping

Escapement
- Most effective mechanism for separating parts fed from conveyor
- Thrust force to 400 N
- Adjustable retract

Rodless Cylinders

OSP-P Series - Band Type Rodless
- Bore sizes 10mm through 80mm
- Pressures to max. 8 bar
- Temperatures -10°F to 80°F
- Aluminum body construction

P1X Series - Band Type Rodless
- 7 bore sizes 16mm through 63mm
- Integral sensor mounting rail
- Pressures 7 to 100 PSIG
- Temperatures 40°F to 140°F
- Aluminum body construction

P1Z Series - Magnetically Coupled Rodless
- 3 bore sizes 16mm, 20mm & 32mm
- Pressures 29 to 100 PSIG
- Temperatures 15°F to 140°F
- Stainless steel body construction

GDL Series - Rails & Cassettes
- 6 sizes available
- Speed up to 10m/s (33 ft/s)
- Temperatures -10°F to 80°C
- Aluminum alloy rail
- Aluminum body construction
Pneumatic Actuator Products

Pictorial Index
- www.parker.com/pneu/actuators

Rotary Actuators

PV Series - Vane Rotary
- [H3](#)
- 8 model sizes
- Single or double vane models
- Temperatures 30°F to 250°F
- 7 to 1800 lb-in output torque

PRN(A) Series - Vane Rotary
- [H11](#)
- 5 miniature and 4 standard models
- Temperatures -23°F to 176°F
- 1.33 to 2355 in-lb torque at 100 PSIG

PTR Series - Rack & Pinion Rotary
- [H23](#)
- Bore sizes 1 through 3-1/4 inch
- Pressures to 250 PSIG
- Temperatures 0°F to 250°F
- 39 to 2281 lb-in output torque

B671/F672 Series - Rack & Pinion Rotary
- [H38](#)
- Standard Rotations: 90°, 180°, 360°
- Output Torque @ 100 psi: 100 lb-in to 2500 lb-in
- Maximum Break-away Pressure: 10 PSI
- Mounting Orientation: Unrestricted

HP Series - Large Rack & Pinion Rotary
- [H42](#)
- 2 large bore models
- 3 standard rotations
- Pressures to 100 PSIG
- Temperatures 0°F to 250°F
- 4500 and 10,000 lb-in output at 100 PSIG

Air Motors

P1V-S Series - Air Motors
- [J2](#)
- Power from 20 through 1200 watts
- Speeds 5 to 24,000 RPM
- Pressures to max. 7 bar
- Temperatures -30°C to 100°C

Actuator Accessories

Linear Alignment Couplers
- [K2](#)
- 12 standard thread sizes
- Maximum reliability for trouble-free operation, long life and lower operating costs
- Increased cylinder life by reducing wear on piston and rod bearings
- Stainless steel versions available

Flow Controls
- [K3](#)
- 9 brass right angle flow controls
- 12 blocking valves
- 8 miniature exhaust flow control valves
- Numerous male global connect fittings and port adapters
- Male and female NPT threaded ports
- Prestolok fittings also available

4TK Series - Air Oil Tanks
- [K6](#)
- 6 standard bore sizes
- Lightweight aluminum / fiberglass design
- 2 fluid flow baffles reduce agitation and aeration
- 8 standard mounting styles

PRL Series - Stand Alone Rodlock
- [K9](#)
- 5 different sizes
- Large holding forces
- 2 different mounting styles
- Case-hardened rod material available

For inventory, lead time, and kit lookup, visit www.pdnplu.com
Electronic Sensors

- Solid state
- Reed
- NAMUR
- Proximity

Shock Absorbers

- Miniature - self-compensating
- Heavyweight - soft contact & self-compensating
- Miniature - soft contact & self-compensating
- Magnum series - adjustable
- Heavy - self-compensating
- Heavy - adjustable
PNEUMATIC DIVISION E-TOOLS

Pneumatic Division Part Lookup Tool

Part Lookup Tool Overview
The purpose of this application is to provide users with more in depth detail, such as replacement kits or current inventory for specific pneumatic part numbers. The tool also provides cross reference information for products that have been previously obsoleted. Searches can be made by searching a portion or all of a part number. Use the drop down options available to narrow your search.

Part Lookup Tool Contents
- Replacement KITs by part number
- Obsolete cross reference
- Inventory/stock levels
- Pricing (with distributor login only)
- Bulk part search
- Shipping location
- Lead time

How to access the Tool
U.S. Parker Pneumatic Distributors
- www.pdnpartlookup.com
- Or download the “Distributor Toolbox” app

Guest Users
- www.pdnplu.com

Pneumatic Division Size & Selection Calculators

Size, Selection and Cost of Air Calculators Overview
The purpose of this application is to provide users and designers of pneumatic systems with a handy collection of compressed air cost calculators, conversion tools and air valve (Cv) and flow (SCFM) calculations for air cylinder actuation. The size and select calculators are available to anyone for use. See details below.

How to access the Tool
- www.parkerpdncalc.com
- Or download the “Pneumatics” calculator app

Calculator Contents
- Cost calculator for leaks
- Cost calculator for compressors
- Cost calculator for reverse flow regulators
- Vacuum flow through an orifice
- Air flow through an orifice
- Annual cost of air cylinder operation
- Valve/FRL sizing for cylinder actuation
- And more!
WARNING: A. FAIL URE OF THE CYLINDER, ITS PARTS, ITS MOUNTING, ITS CONNECTIONS TO OTHER OBJECTS, OR ITS CONTROL S CAN RESULT IN:

- Unanticipated or uncontrolled movement of the cylinder or objects connected to it.
- Falling of the cylinder or objects held up by it.
- Fluid escaping from the cylinder, potentially at high velocity.

THESE EVENTS COULD CAUSE DEATH OR PERSONAL INJURY by, FOR EXAMPLE, PERSONS FALLING FROM HIGH OCCATIONS, BEING CRUSHED OR STRUCK by HEAVY OR FAST MOVING OBJECTS, OR BEING PUSHED INTO DANGEROUS EQUIPMENT OR SITUATIONS, OR IF ILLING ON ESCAPED FI UID.

Before selecting or using Parker (The Company) cylinders or related accessories, it is important that you read, understand and follow the following safety information. Training is advised before selecting and using The Company’s products.

1.0 General Instructions

1.1 Scope – This safety guide provides instructions for selecting and using (including assembling, installing, and maintaining) cylinder products. This safety guide is a supplement to and is to be used with the specific Company publications for the specific cylinder products that are being considered for use.

1.2 Fail Safe – Cylinder products can and do fail without warning for many reasons. All systems and equipment should be designed in a fail-safe mode so that if the failure of a cylinder product occurs people and property won’t be endangered.

1.3 Distribution – Provide a free copy of this safety guide to each person responsible for selecting or using cylinder products. Do not select or use The Company’s cylinders without thoroughly reading and understanding this safety guide as well as the specific Company publications for the products considered or selected.

1.4 User Responsibility – Due to very wide variety of cylinder applications and cylinder operating conditions, The Company does not warrant that any particular cylinder is suitable for any specific application. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The hydraulic and pneumatic cylinders outlined in this catalog are designed to The Company's design guidelines and do not necessarily meet the design guideline of other agencies such as American Bureau of Shipping, ASME Pressure Vessel Code etc. The user, through its own analysis and testing, is solely responsible for:

- Making the final selection of the cylinders and related accessories.
- Determining if the cylinders are required to meet specific design requirements as required by the Agency(s) or industry standards covering the design of the user's equipment.
- Assuring that the user's requirements are met, OSHA requirements are met, and safety guidelines from the applicable agencies such as but not limited to ANSI are followed and that the use presents no health or safety hazards.
- Providing all appropriate health and safety warnings on the equipment on which the cylinders are used.

1.5 Additional Questions – Call the appropriate Company technical service department. If you have any questions or require any additional information. See the Company publication for the product being considered or used, or call 1-800-CPARKER, or go to www.parker.com, for telephone numbers of the appropriate technical service department.

2.0 Cylinder and Accessories Selection

2.1 Seals – Part of the process of selecting a cylinder is the selection of seal compounds. Before making this selection, consult the "seal information page(s)" of the publication for the series of cylinders of interest.

The application of cylinders may allow fluids such as cutting fluids, wash down fluids etc. to come in contact with the external area of the cylinder. These fluids may attack the piston rod wiper and or the primary seal and must be taken into account when selecting and specifying seal compounds. Dynamic seals will wear. The rate of wear will depend on generally operating factors. Wear can be rapid if a cylinder is mis-aligned or if the cylinder has been improperly serviced. The user must take seal wear into consideration in the application of cylinders.

2.2 Piston Rods – Possible consequences of piston rod failure or separation of the piston rod from the piston include, but are not limited to:

- Piston rod and or attached load thrown off at high speed.
- High velocity fluid discharge.
- Piston rod extending when pressure is applied in the piston retract mode.

Piston rods or machine members attached to the piston rod may move suddenly and without warning as a consequence of other conditions occurring to the machine such as, but not limited to:

- Unexpected detachment of the machine member from the piston rod.
- Failure of the pressurized fluid delivery system (hoses, fittings, valves, pumps, compressors) which maintain cylinder position.
- Catastrophic cylinder seal failure leading to sudden loss of pressurized fluid.
- Failure of the machine control system.

Follow the recommendations of the “Piston Rod Selection Chart and Data” in the publication for the series of cylinders of interest. The suggested piston rod diameter in these charts must be followed in order to avoid piston rod buckling.

Piston rods are not normally designed to absorb bending moments or loads which are perpendicular to the axis of piston rod motion. These additional loads can cause the piston rod to fail. If these types of additional loads are expected to be imposed on the piston rod, their magnitude should be made known to our engineering department. The cylinder user should always make sure that the piston rod is securely attached to the machine member.

On occasion cylinders are ordered with double rods (a piston rod extended from both ends of the cylinder). In some cases a stop is threaded on to one of the piston rods and used as an external stroke adjuster. On occasions spacers are attached to the machine member connected to the piston rod and also used as a stroke adjuster. In both cases the stops will create a pinch point and the user should consider appropriate use of guards. If these external stops are not perpendicular to the mating contact surface, or if debris is trapped between the contact surfaces, a bending moment will be placed on the piston rod, which can lead to piston rod failure. An external stop will also negate the effect of cushioning and will subject the piston rod to impact loading. Those two (2) conditions can cause piston rod failure. Internal stroke adjusters are available with and without cushions. The use of external stroke adjusters should be reviewed with our engineering department.

The piston rod to piston and the stud to piston rod threaded connections are secured with an anaerobic adhesive. The strength of the adhesive decreases with increasing temperature. Cylinders which can be exposed to temperatures above +250°F (+121°C) are to be ordered with a non-studded piston rod and a pinned piston to rod joint.

2.3 Cushions – Cushions should be considered for cylinder applications when the piston velocity is expected to be over 4 inches/second. Cylinder cushions are normally designed to absorb the energy of a linear applied load. A rotating mass has considerably more energy than the same mass moving in a linear mode. Cushioning for a rotating mass application should be reviewed by our engineering department.

2.4 Cylinder Mountings – Some cylinder mounting configurations may have certain limitations such as but not limited to minimum stroke for side or foot mounting cylinders or pressure de-ratings for certain mounts. Carefully review the catalog for these types of restrictions.

Always mount cylinders using the largest possible high tensile alloy steel socket head cap screws that can fit in the cylinder mounting holes and torque them to the manufacturer’s recommendations for their size.

2.5 Port Fittings – Hydraulic cylinders applied with meter out or deceleration circuits are subject to intensified pressure at piston rod end. The rod end pressure is approximately equal to:

\[
\text{operating pressure \times effective cap end area} = \text{effective rod end piston area}
\]

Contact your connector supplier for the pressure rating of individual connectors.

3.0 Cylinder and Accessories Installation and Mounting

3.1 Installation

3.1.1 – Cleanliness is an important consideration, and cylinders are shipped with the ports plugged to protect them from contaminants entering the ports. These plugs should not be removed until the piping is to be installed. Before making the connection to the cylinder ports, piping should be thoroughly cleaned to remove all chips or burrs which might have resulted from threading or flaring operations.
3.1.2 – Cylinders operating in an environment where air drying materials are present such as fast-drying chemicals, paint, or weld splatter, or other hazardous conditions such as excessive heat, should have shields installed to prevent damage to the piston rod and piston rod seals.

3.1.3 – Proper alignment of the cylinder piston rod and its mating component on the machine should be checked in both the extended and retracted positions. Improper alignment will result in excessive rod gland and/or cylinder bore wear. On fixed mounting cylinders attaching the piston rod while the rod is retracted will help in achieving proper alignment.

3.1.4 – Sometimes it may be necessary to rotate the piston rod in order to thread the piston rod into the machine member. This operation must always be done with zero pressure being applied to either side of the piston. Failure to follow this procedure may result in loosening the piston to rod-threaded connection. In some rare cases the turning of the piston rod may rotate a threaded piston rod gland and loosen it from the cylinder head. Confirm that this condition is not occurring. If it does, re-tighten the piston rod gland firmly against the cylinder head.

For double rod cylinders it is also important that when attaching or detaching the piston rod from the machine member that the torque be applied to the piston rod end of the cylinder that is directly attaching to the machine member with the opposite end unrestrained. If the design of the machine is such that only the rod end of the cylinder opposite to where the rod attaches to the machine member can be rotated, consult the factory for further instructions.

3.2 Mounting Recommendations

3.2.1 – Always mount cylinders using the largest possible high tensile alloy steel socket head screws that can fit in the cylinder mounting holes and torque them to the manufacturer’s recommendations for their size.

3.2.2 – Side-Mounted Cylinders – In addition to the mounting bolts, cylinders of this type should be equipped with thrust keys or dowel pins located so as to resist the major load.

3.2.3 – Tie Rod Mounting – Cylinders with tie rod mountings are recommended for applications where mounting space is limited. The standard tie rod extension is shown as BB in dimension tables. Longer or shorter extensions can be supplied. Nuts used for this mounting style should be torqued to the same value as the tie rods for that bore size.

3.2.4 – Flange Mount Cylinders – The controlled diameter of the rod gland extension on head end flange mount cylinders can be used as a pilot to locate the cylinders in relation to the machine. After alignment has been obtained, the flanges may be drilled for pins or dowels to prevent shifting.

3.2.5 – Trunnion Mountings – Cylinders require lubricated bearing blocks with minimum bearing clearances. Bearing blocks should be carefully aligned and rigidly mounted so that the trunnions will not be subjected to bending moments. The rod end should also be pivoted with the pivot pin in line and parallel to axis of the trunnion pins.

3.2.6 – Clevis Mountings – Cylinders should be pivoted at both ends with centerline of pins parallel to each other. After cylinder is mounted, be sure to check to assure that the cylinder is free to swing through its working arc without interference from other machine parts.

4.0 Cylinder and Accessories Maintenance, Troubleshooting and Replacement

4.1 Storage – At times cylinders are delivered before a customer is ready to install them and must be stored for a period of time. When storage is required the following procedures are recommended.

4.1.1 – Store the cylinders in an indoor area which has a dry, clean and noncorrosive atmosphere. Take care to protect the cylinder from both internal corrosion and external damage.

4.1.2 – Whenever possible cylinders should be stored in a vertical position (piston rod up). This will minimize corrosion due to possible condensation which could occur inside the cylinder. This will also minimize seal damage.

4.1.3 – Port protector plugs should be left in the cylinder until the time of installation.

4.1.4 – If a cylinder is stored full of hydraulic fluid, expansion of the fluid due to temperature changes must be considered. Installing a check valve with free flow out of the cylinder is one method.

4.1.5 – When cylinders are mounted on equipment that is stored outside for extended periods, exposed unpainted surfaces, e.g. piston rod, must be coated with a rust-inhibiting compound to prevent corrosion.

4.2 Cylinder Trouble Shooting

4.2.1 – External leakage

4.2.1.1 – Rod seal leakage can generally be traced to worn or damaged seals. Examine the piston rod for dents, gouges or score marks, and replace piston rod if surface is rough.

Rod seal leakage could also be traced to gland wear. If clearance is excessive, replace rod bushing and seal. Rod seal leakage can also be traced to seal deterioration. If seals are soft or gummy or brittle, check compatibility of seal material with lubricant used if air cylinder, or operating fluid if hydraulic cylinder. Replace with seal material, which is compatible with these fluids. If the seals are hard or have lost elasticity, it is usually due to exposure to temperatures in excess of 165°F (+74°C). Shield the cylinder from the heat source to limit temperature to 350°F (+177°C) and replace with fluorocarbon seals.

4.2.1.2 – Cylinder body seal leak can generally be traced to loose tie rods. Torque the tie rods to manufacturer’s recommendation for that bore size.

Excessive pressure can also result in cylinder body seal leak. Determine maximum pressure to rated limits. Replace seals and retorque tie rods as in paragraph above. Excessive pressure can also result in cylinder body seal leak. Determine if the pressure rating of the cylinder has been exceeded. If so, bring the operating pressure down to the rating of the cylinder and have the tie rods replaced.

Pinched or extruded cylinder body seal will also result in a leak. Replace cylinder body seal and retorque as in paragraph above. Cylinder body seal leakage due to loss of radial squeeze which shows up in the form of flat spots or due to wear on the O.D. or I.D. – Either of these are symptoms of normal wear due to high cycle rate or length of service. Replace seal as per paragraph above.

4.2.2 – Internal leakage

4.2.2.1 – Piston seal leak (by-pass) 1 to 3 cubic inches per minute leakage is considered normal for piston ring construction. Virtually no static leak with lip seal type seals on piston should be expected. Piston seal wear is a usual cause of piston seal leakage. Replace seals as required.

4.2.2.2 – With lip seal type piston seals excessive back pressure due to over-adjustment of speed control valves could be a direct cause of rapid seal wear. Contamination in a hydraulic system can result in a scored cylinder bore, resulting in rapid seal wear. In either case, replace piston seals as required.

4.2.2.3 – What appears to be piston seal leak, evidenced by the fact that the cylinder drifts, is not always traceable to the piston. To make sure, it is suggested that one side of the cylinder piston be pressurized and the fluid line at the opposite port be disconnected. Observe leakage. If none is evident, seek the cause of cylinder drift in other component parts in the circuit.

4.2.3 – Cylinder Fails to Move the Load

4.2.3.1 – Pneumatic or hydraulic pressure is too low. Check the pressure at the cylinder to make sure it is to circuit requirements.

4.2.3.2 – Piston Seal Leak – Operate the valve to cycle the cylinder and observe fluid flow at valve exhaust ports at end of cylinder stroke. Replace piston seals if flow is excessive.

4.2.3.3 – Cylinder is undersized for the load – Replace cylinder with one of a larger bore size.

4.3 Erratic or Chatter Operation

4.3.1 – Excessive friction at rod gland or piston bearing due to load misalignment – Correct cylinder-to-load alignment.

4.3.2 – Cylinder sized too close to load requirements – Reduce load or install larger cylinder.

4.3.3 – Erratic operation could be traced to the difference between static and kinetic friction. Install speed control valves to provide a back pressure to control the stroke.

4.4 Cylinder Modifications, Repairs, or Failed Component

Cylinders as shipped from the factory are not to be disassembled and or modified. If cylinders require modifications, these modifications must be done at company locations or by The Company’s certified facilities. The Cylinder Division Engineering Department must be notified in the event of a mechanical fracture or permanent deformation of any cylinder component (excluding seals). This includes a broken piston rod, tie rod, mounting accessory or any other cylinder component. The notification should include all operation and application details. This information will be used to provide an engineered repair that will prevent recurrence of the failure.

It is allowed to disassemble cylinders for the purpose of replacing seals or seal assemblies. However, this work must be done by strictly following all the instructions provided with the seal kits.
Upon credit approval and payment for all purchases is due thirty (30) days from the date of invoice. Buyer may not modify or cancel any order for which credit has been approved. Seller may, at any time, modify prices at any time to adjust for any raw material price fluctuations. Unless otherwise specified by Buyer, all prices are F.A.S. Seller's facility (INCOTERMS 2010). All sales are contingent upon delivery in accordance with applicable specifications provided by Seller to Buyer for ninety (90) days from the date of delivery. Buyer may not resell the Products for any purpose prohibited in Seller's instructions, guides or specifications. Buyer otherwise fails to modify with Seller's instructions, guides and specifications. Buyer acknowledges that any such use, repair, removal, alteration, test, or inspection of the Products is at Buyer's own risk and peril. Buyer will defend and hold Seller harmless from any losses, claims, liabilities, damages, lawsuits, judgments and costs (including attorney fees and defense costs), whether for personal injury, property damage, intellectual property infringement, or any other claim, brought by any third parties, including, but not limited to, employees, or any other person, arising out of: (a) improper selection, application, design, specification or other misuse of Products provided by Seller; (b) any act or omission, negligent or otherwise, of Buyer; (c) Seller's use of any unlicensed intellectual property, trademarks or trade secrets in the design or manufacture of any information or data furnished by Buyer; (d) damage to the Products from an external cause, repair or attempted repair by anyone other than Seller; failure to follow instructions, guidelines and specifications provided by Seller; or (e) Buyer tampering with or interfering with the Products for any reason; or (e) Buyer's failure to comply with these Terms. Seller shall not indemnify Buyer under any circumstance except as provided in these Terms.

10. Cancellations and Changes. Buyer may not cancel or modify any order for any reason, except with Seller's written consent. Any actions that will indemnify, defend and hold Seller harmless against all direct, incidental and consequential loss or damage. Seller, at any time, may change specifications, designs or terms of sale.

11. Limitation on Assignment. Buyer may not assign its rights or obligations without the prior written consent of Seller.

12. Use of Products, Indemnity by Buyer. Buyer shall comply with all instructions, guides and specifications provided by Seller. Buyer otherwise fails to comply with Seller's instructions, guides, or specifications, Buyer otherwise fails to comply with Seller's instructions, guides and specifications. Buyer will indemnify, defend and hold Seller harmless from any losses, claims, liabilities, damages, lawsuits, judgments and costs (including attorney fees and defense costs), whether for personal injury, property damage, intellectual property infringement, or any other claim, brought by any third parties, including, but not limited to, employees, or any other person, arising out of: (a) improper selection, application, design, specification or other misuse of Products provided by Seller; (b) any act or omission, negligent or otherwise, of Buyer; (c) Seller's use of any unlicensed intellectual property, trademarks or trade secrets in the design or manufacture of any information or data furnished by Buyer; (d) damage to the Products from an external cause, repair or attempted repair by anyone other than Seller; failure to follow instructions, guidelines and specifications provided by Seller, or (e) Buyer tampering with or interfering with the Products for any reason; or (e) Buyer's failure to comply with these Terms. Seller shall not indemnify Buyer under any circumstance except as provided in these Terms.

13. Termination. Seller may terminate any agreement governed by or arising from these Terms for any reason and at any time by giving Buyer thirty (30) days prior written notice. Seller may immediately terminate, in writing, if Buyer: (a) breaches any provision of these Terms; (b) appoints a trustee, receiver or liquidator for all or any part of Buyer's property; (c) files a petition for relief in bankruptcy by Buyer or a substantial portion of its assets, or a receiver is appointed for the benefit of creditors; or (d) disposes of its business or liquidates or a majority of its assets.

14. Ownership of Software. Seller retains ownership of all Software supplied to Buyer hereunder. In no event will Buyer obtain any greater right in and to the Software than a right in the nature of a license to use the thereof and subject to compliance with any other terms provided with the Software.

15. Indemnity for Infringement of Intellectual Property Rights. Seller is not liable for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights ("Intellectual Property Rights") except as provided in this Section. Buyer will indemnify, defend and hold Seller harmless from any claim of infringement or any other claim, brought by or incurred by Buyer, Buyer's employees, or any other person arising out of the use of, or inability to use the Software in accordance with the terms of the License Agreement. Seller will indemnify, defend and hold Buyer harmless from any claim of infringement or any other claim, brought by or incurred by Buyer, Buyer's employees, or any other person arising out of the use of, or inability to use the Software in accordance with the terms of the License Agreement.