The mica/graphite/mica story has been around a long time. Unfortunately, the ending never gets any happier.

In 1987, Flexitallic experimented with a mica-encapsulated graphite seal to resist extreme temperature, and pressure conditions. Although unsuccessful, our search led to discovery of vermiculite’s use in sealing—the basis for the incredibly versatile material, Thermiculite®. Unlike mica, vermiculite can be exfoliated. But unlike graphite, it will not oxidize—enabling Thermiculite to create a lasting, gas-tight seal in high-temperature (up to 1800°F/982°C) and high-pressure environments. Something mica/graphite/mica still cannot do.

Mica-shielding-graphite only delays the inevitable.

Lab results that support the premise that mica/graphite/mica creates an effective seal are due to the brevity of the test period. All results whether in the lab or onsite are dependent on time, media, installation, design and bolt-load. Mica around graphite may delay oxidation but it will not prevent it. Mica leaks too fast to be measured on ASTM test rigs. Mica alone is very porous. At DIN

<table>
<thead>
<tr>
<th>REQUIRED SERVICE LIFE</th>
<th>GRAPHITE</th>
<th>THERMICULITE® 815, 835 & 845</th>
<th>THERMICULITE® 715</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 YEAR</td>
<td>691°F (366°C)</td>
<td>1800°F (982°C)</td>
<td>850°F (454°C)</td>
</tr>
<tr>
<td>3 YEARS</td>
<td>630°F (332°C)</td>
<td>1800°F (982°C)</td>
<td>850°F (454°C)</td>
</tr>
<tr>
<td>5 YEARS</td>
<td>610°F (321°C)</td>
<td>1800°F (982°C)</td>
<td>850°F (454°C)</td>
</tr>
<tr>
<td>10 YEARS</td>
<td>580°F (304°C)</td>
<td>1800°F (982°C)</td>
<td>850°F (454°C)</td>
</tr>
</tbody>
</table>

Gas Leakage of >100ml/min vs. typical <1.0 ml/min for a laminated sheet. Standard mica max pressure is 5 bar (72.5 psi).

No wonder mica manufacturers don’t list sealability.
Thermiculite replaces all mica/graphite/mica gaskets and prevents oxidation—while increasing the range of temperature resistance.

The real world is a different story.

Failure in under four months. A Japanese ethylene producer running hydrocarbon steam at 1,110°F found that within an installed base of 22 mica/graphite/mica spiral wound gaskets, six (27%) were leaking within 3.7 months. At six months, 15 of 25 gaskets (60%) were leaking. All were replaced with Thermiculite and have performed successfully since 2005.*

100% oxidation in four weeks. A multinational chemical company in Delaware USA, using mica/graphite/mica gaskets, style LSI—at temps of 1200°F—saw 100% in four weeks when they opened the joint.*

A longterm solution. A silica manufacturer using superheated steam—1350°F, Class 150-1500—found that mica/graphite/mica and ceramic-filled spirals all failed. They have used Thermiculite spirals successfully for the last ten years.

Thermiculite replaces all mica/graphite/mica gaskets and prevents oxidation—while increasing the range of temperature resistance.

* Data on file at Flexitallic.

Thermiculite protects workers, communities and your good name.

No wonder the world’s leading gas, power and chemical companies trust Thermiculite to add an extra measure of safety to sealing applications like: ethylene furnace, combustion, engine exhaust, coal applications, super heated steam, nitrogen fertilizer, power, and many more.

Thermiculite is available in a wide range of forms—815 Sheet, 835 Spiral Wound, 845 Flexpro™ Kammprofile, and 715 Fiber Sheet—to fit even the most difficult applications.

Thermiculite products can replace aramid, glass, and carbon fiber; PTFE and graphite gaskets in a wide range of industrial applications.

Be Flexitallic SAFE. Especially when seal deterioration could be catastrophic. **Insist on Thermiculite.**